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This paper investigates the relation between the conditional expected equity risk premium
and the slope of the term structure of interest rates. Theoretically, these variables are linked,
the relation may be nonlinear, and negative risk premiums are consistent with equilibrium.
Given these implications, we employ a nonparametric estimation technique to document the
empirical relation between the risk premium and the slope of the term structure using almost
two hundred years of data. Of particular interest, the risk premium is increasing in the term
structure slope; however, for either small or negative slopes, the risk premium is much more
. sensitive to changes in interest rates. In addition, the empirical results imply negative expected
equity risk premiums for some inverted term structures. Finally, variations in the risk premium
do not appear to be related to variations in the variance of equity returns. We illustrate these
features in a stylized consumption-based model, and provide the economic intuition behind the

results.
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1. Introduction

Over the past 10 years, there has been a surge in re-
search documenting time-variation in expected returns
using a variety of instrumental variables. Yields on gov-
ernment bonds are natural instruments as they should
theoretically depend on many of the unidentified state
variables that drive expected stock returns. Thus, future
expected returns should be linked to information con-
tained in the term structure of interest rates. The em-
pirical evidence indicates that expected stock returns
tend to be positively related to interest rate maturity
spreads (e.g., Campbell 1987, Fama and French 1989,

! For earlier examples of research on time-varying expected returns,
see Hansen and Singleton (1983), Gibbons and Ferson (1985), and
Keim and Stambaugh (1986). For extensive reviews of the literature
on expected returns and the term structure, see survey articles by Fama
(1991) and Hawawini and Keim (1995).
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and Chen 1991). Furthermore, upward versus down-
ward sloping term structures are important for deter-
mining this relation (e.g., Fama 1986, and Harvey 1988).
Finally, most of the evidence covers post World War II
data, which includes very few inverted term structures.
The conclusion from this literature is that there is a sig-
nificant relation between stock return premiums and
term structure variables. In this paper, we investigate
further the relation between the conditional expected
risk premium and the slope of the term structure of in-
terest rates.

We provide several contributions to the existing lit-
erature. First, we employ data over the past two cen-
turies on both stock returns and short- and long-term
interest rates. This leads to enough independent obser-
vations on upward sloping and inverted term
structures to establish a link with the expected risk
premium. Moreover, using a new sample, we avoid
some of the ““data snooping” biases associated with
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repeated attempts to find statistically significant re-
lations within a single dataset.? Second, given that
theory does not dictate a linear relation between the
risk premium and the term structure, we provide tests
of the nonlinearity in this relation.’> We find that,
when the slope of the term structure is either small or
negative, the risk premium is much more sensitive to
changes in the spread between long- and short-term
interest rates. This evidence is confirmed using both
nonparametric and parametric methods. Third, while
existing evidence suggests that the magnitude of the
expected risk premium depends upon the slope of the
term structure of interest rates, we report evidence
that the sign of the risk premium does also. In partic-
ular, when the term structure is downward sloping,
the expected risk premium can be negative. Fourth,
the magnitude of the risk premium does not appear
to be related to the variance of the risk premium. This
empirical observation is inconsistent with the stan-
dard dynamic capital asset pricing model which
implies a positive relation between expected return
and variance. However, it is consistent with a
consumption-based asset pricing model in which
these two moments are not so closely tied. In fact, all
of the empirical observations above are illustrated in
a stylized model that provides the economic intuition
behind the results.

The paper is organized as follows. In §2, we review
the existing evidence and briefly illustrate the theoreti-
cal linkage between the risk premium and the term
structure in a general setting. Section 3 provides a de-
scription of the data and some preliminary analysis. In
§4, we test for nonlinearity in a parametric setting. Sec-
tion 5 employs a nonparametric analysis to better de-
scribe the empirical relation between the risk premium
and the term structure spread. Section 6 provides the
economic intuition behind the empirical results in the
context of a stylized numerical example. In §7, we make
some concluding remarks.

2 For example, Foster and Smith (1997) argue that there is a tendency
to substantially overfit time-series models and provide some examples
from the current empirical finance literature.

3 Nonlinear models have been used previously to predict the equity
risk premium. See, for example, Kairys (1993), who uses changes in
commercial paper rates to predict the sign of the risk premium.
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2. Theory and Existing Evidence
There is substantial empirical evidence regarding the
relation between stock returns and interest rates. In gen-
eral, researchers have found a positive relation between
the risk premium and the slope of the term structure of
interest rates.* Fama and French (1989) argue that the
risk premium moves countercyclically. That is, expected
risk premiums during recessions are large relative to
premiums during expansions. There is also evidence
linking the term structure to the business cycle (e.g.,
Kessel 1965, Fama 1986, Harvey 1988 and Estrella and
Hardouvelis 1991). For example, Harvey (1988) finds
that the term structure is upward sloping during reces-
sions (i.e., at the trough of the cycle), while inverted
term structures generally occur towards the end of ex-
pansions (i.e., at the peak of the cycle). These charac-
teristics of the data then produce a link between the
equity risk premium and the term structure.

Outside of the intuition outlined above, there has
been little theoretical work on the relation between the
term structure and the expected risk premium.’> Al-
though it is difficult to relate these variables in closed-
form, it is possible to make several observations in the
context of a general model. In the absence of arbitrage,
assets can be priced as the expected product of their
payoff with a pricing operator M; .1

Qr = EIM,; 1+1(Qsa + D], 1)

where Q is the nominal price of the asset, D is the nom-
inal dividend, and E|[-] is the expectation conditional
on information at time ¢ (see Harrison and Kreps 1979).
In many contexts, this pricing operator can be thought
of as the nominal marginal rate of substitution (MRS)
between time f and time ¢ + 1 of a representative agent,
which is defined as a function of the ratio of the mar-
ginal utilities of consumption in the two periods (see §6

4 Campbell (1987) uses the short-end of the yield curve to predict ex-
cess monthly returns on stocks and bonds over the 1959 to 1983 period.
He finds that the spreads of the two-month and six-month bills over
the one-month bill have predictive power. Using longer interest rate
spreads, Fama and French (1989) and Chen (1991) find similar results
in a post World War II sample.

5 An exception is Campbell (1986) who relates bond prices to a claim
on the market’s dividend in a given period.
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for an example). Equation (1) can also be rewritten in
terms of asset returns

El[Mf,t+1Rt,t+1] =1, 2)

where Rm+1 = (Qt+1 + Dl+1)/Ql-
Using Eq. (1), the price of a r-period, riskless bond
which pays $1 in the future is

P tr = EI[Mf,t+r] 3)

where M; ;. . is the MRS between time t and time ¢ + T,
which is just the product of the single period marginal
rates of substitution, ie, M., = M. 1Myq442
** *Misr_144-- The slope of the term structure (denoted
Ary,) is simply the yield on a long-term bond (denoted
Ry) minus the yield on a 1-period bond (the risk-free
rate, denoted R,), where

Ry = Et[Mt,f+-r]_1/Tl 4
Rﬂ = Et[MI‘,hH]—l/ 5)
Arg = Ry — Ry, 6)

and the long-term bond has 7 periods to maturity.

Equations (2) and (5) imply the following expression
for the expected risk premium (i.e., the expected return
on the asset minus the risk-free rate)

Et[Rt,H-l - th] = —th Covi[R; 41, M, ial, (7)

where Cov,[-,-] is the conditional covariance at time ¢.
This relation holds true for all assets, including the stock
market, so the expected equity risk premium (denoted
7P:+1) can also be written as a function of the covariance
of the market return with the MRS

Elrpii1] = EdRppiq — Ry]
= _Rﬂ Covi[Rmt+1, Miss1] (8)

where R, is the 1-period return on the market. In ad-
dition, Eq. (1) also implies that the price of the market
next period, which is one important component of the
return, is itself the sum of future dividends discounted
back at the appropriate marginal rates of substitution,
ie.,

Qmi+1 = By I:Z Mf+1,t+1+1Dmt+1+t] ’ C)]

1=1
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where Q,, and D,, are the market price and dividend
respectively.

Given this level of generality, there are four prelimi-
nary conclusions that can be drawn. First, the expected
risk premium and the term structure are linked via their
dependence on expectations of future marginal rates of
substitution (see Eqs. (4)-(6), (8) and (9)). Note that
this dependence coincides with explanations in the lit-
erature linking both variables to business cycle fluctu-
ations through such factors as economic growth.

Second, the relation between the risk premium and
the slope of the term structure is likely to be nonlinear
given the nonlinear functions of the marginal rates of
substitution in Egs. (6) and (8).

Third, negative risk premiums are not precluded in
this environment. Equation (8) implies that the expected
return on equity will be less than the risk-free rate if,
and only if, this return covaries positively with the MRS.

Fourth, while the expected risk premium will vary
depending on the covariance of the market return with
the MRS, this variation will not necessarily coincide
with variation in the variance of the risk premium. In
particular, the covariance in Eq. (8) will be proportional
to the variance of equity returns only when the market
return is perfectly correlated with the MRS.

3. Data and Preliminary Analysis

We use annual data on short- and long-term yields and
stock returns over the past two centuries for the U.S.
(1802-1990). The data are described in detail in Siegel
(1992) and Schwert (1990), so we provide only a brief
synopsis. The stock return series is constructed to most
closely match a broad index. With respect to the yield
data, there was an active market for long-term U.S. gov-
ernment bonds over most of the sample period. Al-
though the maturities differ, Siegel (1992) chooses the
bonds closest to twenty years. In the earlier period, Sie-
gel (1992) must construct the U.S. risk-free rate using
U.S. commercial paper rates, U.K. short-term rates (un-
der the gold standard), and available U.S. government
rates. He finds that his constructed series matches actual
available rates during this period.®

¢ Throughout the paper we use simple, not continuously compounded,
yields. The results are essentially invariant to this choice.
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In spite of potential measurement errors in the data-
set, using such a long sample has several advantages
relative to the post World War II, monthly data used in
previous empirical investigations. First, short sample
periods provide only limited information due to (i) the
high autocorrelation in monthly term structure spreads,
. and (ii) the limited number of business cycles contained
in a small sample. Second, new data is less subject to
data snooping concerns. Third, the robustness of the re-
sults over various subsamples can be studied.

As an introduction to the data, Figure 1 plots the ex-
cess stock market return and the yield spread (times
ten) over the sample period 1802-1990. The risk pre-
mium is defined as the annual ex post stock market re-
turn in excess of the risk-free rate (rprs1 = Rors1 — Rp),
and the spread (Ary,) is the long-term yield minus the
short-term yield. While the excess return shows sub-
stantially more variation, it is apparent that downward
(upward) sloping yield curves tend to be associated
with low (high) returns.

Over the sample period 1802-1990 and the subper-
iods 1802-1896 and 1897-1990, Table 1 provides the
correlation between the excess equity return and the
term structure spread. The standard errors on the cor-
relation estimates are adjusted for both autocorrelation
and heteroskedasticity. The correlation between the ex-
cess return and the term structure spread in the full
sample is 0.316, with a standard error of 0.0826; there-
fore, the estimate is 3.8 standard errors from zero. For
the first subperiod the estimate is 0.380 (4.3 standard
errors from zero), while for the second subperiod the
correlation is 0.233 (2.4 standard errors from zero).”

4. Testing for Nonlinearity

We first apply some common nonlinear methods to
gauge both the statistical and economic significance of
the nonlinearities in the relation between the risk pre-
mium and the spread. We use two descriptive methods
for approximating the form of the relation: (i) a piece-

7 Although the correlation coefficients are similar in magnitude across
subperiods, this is not true of the mean excess returns. Siegel (1992)
finds that the average excess return is much lower in the nineteenth
than the twentieth century. Siegel’s explanation is based on there being
low levels of interest rates in the latter period.
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Figure 1 The Excess Stock Market Retum and the Spread

The Figure Plots the Annual Excess Stock Market Return and
the Yield Spread Between Long-term and Short-term Bonds
(Times 10) versus Time.
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wise linear regression of the risk premium on the slope
of the term structure, and (ii) a Taylor expansion of the
risk premium as a function of the term structure spread.
While the Taylor expansion method has some critics
(e.g., Gallant 1982), it has a convenient economic inter-
pretation in terms of the distribution of the underlying
variables.

As a first approximation of nonlinearities in the data,
we perform a piecewise linear regression of the risk pre-
mium on the predetermined spread between the long-
and short-rate of interest. We use a spread of 0% (i.e.,
the point at which the term structure is flat) as a break-
point. Specifically, we run the regression

P = @ + Bi(Ary) + B, max{0, Ary] + €441,

where ¢, is the disturbance term.

The results are presented in Table 2. The estimate of
the coefficient B, is consistently negative for the overall
sample and the subperiods. Moreover, in most of the
regressions, the estimator is significantly different from
zero. This suggests nonlinearity in the relation between
the risk premium and the term structure. For illustration
purposes, consider the regression for the full sample pe-
riod. Up to the breakpoint (i.e., a spread of 0%), the
slope of the regression of the risk premium on the term
structure spread is approximately 7.32. Hence, for every
0.1% change in Ary;, there is a 0.7% change in E[rp;..].
In contrast, for positive spreads, where the relevant
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Table 1 The Excess Stock Market Return and the Term Structure Spread
Period Elrprd] £Ar) d[1Dr.1] sd[Ar] COrr(1Pesr, Alyy)

1802-1990 0.0311 0.00356 0.167 0.0117 0.316
0.0111) - (0.00212) (0.0203) (0.00131) (0.0826)

1802-1896 0.00745 -0.00135 0.135 0.00915 0.380
(0.00901) (0.00154) (0.0195) (0.00116) (0.0888)

1897-1990 0.0550 0.00853 0.192 0.0119 0.233
(0.0166) (0.00281) (0.0304) (0.00145) (0.0986)

Note: Table 1 provides summary statistics (means, standard deviations, and correlations) for the
excess stock market return (rp,,,) and the term structure spread (A, using annual data on stock
returns, one-year rates and long-rates (maturity close to 20 years). Standard errors, in parentheses,
are heteroskedasticity and serial correlation adjusted using Hansen’s (1982) generalized method of

moments (GMM).

slope coefficient is 8, + §, = 7.3 — 4.4 = 2.9, there is
only a 0.3% change. This result suggests that the non-
linear relation is concave. That is, the expected risk pre-
mium is more sensitive to changes in the spread when
the term structure spread is negative.

A second way of approximating a functional form is
to apply a Taylor series expansion. Specifically, assum-

Table 2 Piecewise Linear Estimation of the Risk Premium—Yield
Spread Relation
Period & i B R

1802-1990 0.033* 7.32* ~4.39 0.109
(0.016) (1.70) 2.77) .

1802-1896 0.014 5.46* 0.41 0.144
(0.024) (212) (4.67)

1897-1990 0.056* 11.20* -9.58* 0.076
(0.025) (4.65) (5.53)

Note: Table 2 estimates the relation between the risk premium and the
term structure spread using a piecewise linear regression. Specifically, the
coefficient estimates are from the regression

i1 = a + By(Ary) + B, max[0, Argd + €404,

where e, is the disturbance term, .., is the market risk premium and
Ary, is the spread between the long- and short-rate of interest. Standard
errors, in parentheses, are heteroskedasticity and serial correlation adjusted
using Hansen’s (1982) GMM. Coefficients significant at the 10% level are
marked with an asterisk. Note that the coefficient 8, represents the difference
in slopes around the breakpoint. Negative (positive) values suggest concavity
(convexity). Annual data on stock returns, one-year rates and long-rates
(maturity close to 20 years) are used.
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ing E/lrp,.11 = f(Ary,, 6), where @ represents parameters
describing the relation, the Taylor expansion of f(-)
around zero leads to

P = a + By(Ary,) + ﬁ2(ArIf,t)2 + oo+ e, (10)

where ¢,,,, captures the unanticipated return and also
the remaining terms of the expansion not used in esti-
mation. While the Taylor expansion holds only locally,
multicollinearity issues aside, it allows the researcher to
interpret movements in the risk premium in terms of
the moments of the distribution of the slope of the term
structure.

Table 3 provides estimates of the relation for Taylor
expansions of various orders. While the results are not
as stable across subperiods as those described previ-
ously, it is possible to form several conclusions. First,
the relation between the risk premium and the term
structure is, for the most part, nonlinear. For example,
in the 1802-1990 sample period, Table 3 shows that the
second-order term, (Ary,)’, has additional explanatory
power for movements in the expected risk premium,
Moreover, the coefficients change very little as Taylor
expansion terms are added.

Second, the second-order Taylor term always appears
with a negative coefficient. For a given change in the
spread, Ary,, there is a f; + 2B.(Ary,) change in
E/lrp;.1]. Consider the coefficients of the second-order
Taylor expansion, #; = 5.26 and f, = —90.74 (adjusted
for the fact that the spread is multiplied by 10 for the
regressions in Table 3), and their implication for the
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Table 3 Taylor Series Expansion of the Risk Premium—Yield Spread Relation
Period a 31 az /93 ﬁA R Xinear
1802-1990 0.027* 0.587* -1.294 ~-1.363 5.589 0.137 6.869
(0.014) (0.206) (1.664) (3.836) (22.358) (0.877)
1802-1990 0.026* 0.570* -0.921* —1.022 0.113 6.561
(0.012) . {0.216) (0.532) (3.800) (0.945)
1802-1990 0.027* 0.526 —0.974" 0.113 5.183
(0.011) (0.091) (0.428) (0.968)
1802-1990 0.015* 0.452* 0.100
(0.008) (0.103) :
18021896 0.019 0.419 —0.420 3.095 0.151 0.622
(0.015) (0.282) (0.663) (7.721) (0.088)
1802-1896 0.021 0.496* -0.759 0.150 0.512
(0.018) (0.166) (1.061) (0.157)
1802-1896 0.015 0.560* 0.144
(0.013) (0.148)
1897-1990 0.031 0.656* —-1.178 -1.805 0.072 3.94
(0.020) (0.347) (0.718) (5.023) (0.727)
1897-1990 0.034* 0.588* -1.370* 0.070 321
0.017) (0.202) {0.765) (0.830)
1897-1990 0.023 0.376* 0.054
(0.016) (0.132)

Note: Table 3 estimates the relation between the risk premium and the term structure spread using a Taylor Series expansion.

The estimates are from the regression:’

K
Pt = a + 3, BAAGY + e,
et

where €111 Captures the unexpected return and the remaining terms of the Taylor expansion, £p,, is the risk premium, and
Ary, is the spread between the long- and short-rate of interest. Standard errors, in parentheses, are heteroskedasticity and
serial correlation adjusted using Hansen’s (1982) GMM. Coefficients significant at the 10% level are marked with an asterisk.
The statistic x%..- provides a test of whether the relation is linear or not, 1.8., B, = B3 = - -+ = 0, with the corresponding P-
value in parentheses. Annual data on stock returns, one-year rates and long-rates (maturity close to 20 years) are used.

1 Note that the yield spread has been multiplied by 10 in the regression for ease in reading the table.

expected risk premium at spreads of —1%, 0% and 1%.
At these term structure spreads, the change in the ex-
pected risk premium (for a given 0.1% change in the
spread) will be 0.71%, 0.53% and 0.35% respectively.
Thus, the estimated relation between the risk premium
and the term structure spread is concave.

Finally, the coefficients on the higher order terms in
the expansion are statistically insignificant, and these
terms add little explanatory power. Thus, as an approx-
imation, the relation can be described by a second-order
expansion with the coefficient on the second term being
negative. It should be noted that the point estimates of
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the other terms, though not significant, imply a slight
flattening of the relation at extreme negative spreads.

While both the Taylor approximation and the piece-
wise linear regression provide statistically significant
evidence of nonlinearity in the relation between the
risk premium and the slope of the term structure, this
evidence should not be interpreted as suggesting that
either of these functional forms provides a precise
model for predicting expected equity returns. In the
following section we employ a nonparametric analy-
sis to gain a better understanding of the true func-
tional relation.
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5. Nonparametric Analysis

5.1. Kernel Estimation

In this section, we employ a kernel estimation proce-
dure for estimating the relation between the expected
risk premium and the slope of the term structure.® Ker-
nel estimation is a nonparametric method for estimating
the joint density of a set of random variables. Specifi-
cally, given m-dimensional vectors z;, 25, ..., zr from
an unknown density f(z), then a kernel estimator of this
density is

151 (z-2z
f2) = T,Eh_"'K(T)’ an
where K(-) is a suitable kernel function and # is the
window width or smoothing parameter. In practice, a
multivariate normal probability density function is fre-
quently used as the kernel function,’ and the window
width is chosen based on the dispersion of the obser-
vations. This fixed window width estimator is often
called the Parzen estimator. The density at any point is
estimated as the average of densities centered at the ac-
tual data points. The further a data point is away from
the estimation point z, the less it contributes to the es-
timated density. Consequently, the estimated density is
highest near high concentrations of data points and low-
est when observations are sparse.

The asymptotic properties of these Parzen estimators,
including consistency and rates of convergence, have
been studied extensively.'® Nevertheless, from an im-
plementation standpoint, they are not totally satisfac-
tory. In particular, in finite samples, the Parzen esti-
mator responds poorly to variations in the true density.

8 For examples of nonlinear methods for approximating functional
forms in the empirical asset pricing literature, see, for example, Harvey
(1991) and Pagan and Hong (1991) who apply the kernel method in
order to capture the nonlinear relation between the risk premium and
volatility and Boudoukh, Richardson, Stanton, and Whitelaw (1997)
who apply it to the pricing and hedging of mortgage-backed securities.
° Epanechnikov (1969) demonstrates that many reasonable kernel
functions give almost optimal results in terms of asymptotic rates of
convergence, and Scott (1992) provides conditions under which the
normal density function is optimal. The issue of the performance of
different kernel functions is beyond the scope of this paper.

1° For a detailed discussion of kernel estimation and its statistical prop-
erties, see Ullah (1988) and the references therein.
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When the density is low and consequently observations
are sparse, the estimated density tends to have spurious
peaks at the actual data points. In contrast, when the
density is high and consequently observations are
dense, the estimated density tends to spread the influ-
ence of these data points over too large a region. A fixed
window width does not permit both smoothing in the
tails and high resolution at the peaks.

One solution to this problem is to consider a variable
kernel estimator (VKE) in which the window width var-
ies across the data points. In order to avoid the data
snooping concerns that can arise when a window width
is selected to achieve a desired degree of smoothing, we
choose an objective criterion for the VKE. Specifically,
Breiman, Meisel and Purcell (1977) propose replacing
the fixed window width in Eq. (11) with

he = akdt,k (12)

where d, ; is the distance from the point z; to its kth near-
est neighbor, and a; is a constant multiplicative factor.
The concept behind the VKE is that d,; will be small
when the data points are dense, and large when they
are sparse, hence overcoming the limitations of the Par-
zen estimator. In fact, Breiman, Meisel and Purcell
(1977) confirm that, in their simulations, the VKE sig-
nificantly outperforms the Parzen estimator. Of equal
importance, they develop a procedure for estimating the
best values of k and e, and this procedure successfully
locates the region of parameter values that gives the best
fit to the actual density. Surprisingly, they find that lo-
cating these parameters is actually easier than locating
the optimal fixed window width k in Eq. (11).

The suggested procedure, and the one employed in
this analysis, is to first select an initial k equal to 10% of
the sample size. A search is then conducted for the a;
which minimizes the goodness-of-fit measure

o T t 2
S = z (‘lf?(t) - —) ’ (13)
t=1 T
where Wy, is the ordered permutation of the variables

B, = expl-Tf(z)V(d, )], (14)

V(r) is the volume of an m-dimensional sphere of radius
r, and d,; is the distance from point z, to its nearest
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neighbor." The minimizing value of a; is then used to
compute the ratio

_ a(dy)*

- O'(dk) ’ (15)

where 4, is the mean of the kth nearest neighbor dis-
tances, and o(d,) is their standard deviation. The final
step is to search for the value of k that minimizes S while
selecting a; so as to keep the ratio \ constant.

For our specific application, we are less interested in
the joint density of the risk premium and the slope of
the term structure, than in the conditional mean and vari-
ance of the risk premium, conditional on the term struc-
ture slope. However, these functionals can be computed
relatively easily given the density (see Ullah 1988, for
details). The obvious benefit of kernel estimation is that
it is a nonparametric way to look at the relation between
the expected risk premium and the slope of the term
structure. The drawback is that its rate of convergence
is relatively slow; therefore, kernel estimation can pro-
vide a noisy functional form in small samples.'? Because
our null does not specify a functional form, the re-
searcher needs to be cautious when interpreting the re-
sults.

The Expected Risk Premium. Figure 2 graphs the
kernel estimation of E[rp;. | Ary,] versus Ary, (top) and
the derivative of the conditional mean with respect to
the term structure slope (i.e., the response coefficient),
which measures the sensitivity of the risk premium to
changes in the term structure slope (bottom). For sim-
plicity, a multivariate normal density function is used
as the kernel function for estimation of the density. Sev-
eral features of the estimated relation between the ex-
pected risk premium and the slope of the term structure
are especially interesting. First, the expected risk pre-
mium is, for the most part, increasing in the term struc-

11 The goodness-of-fit measure $ is developed in Cover (1972) based
on the fact that the variables w;, evaluated at the true density, have a
density that is approximately uniform.

12 The rate of convergence is approximately T-%/**#, where T is the
number of observations and p is the number of independent variables.
Consequently, kernel estimation with one explanatory variable and
189 observations is somewhat comparable to OLS with 66 observa-
tions.
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Figure 2 The Risk Premium and the Spread: Kemel Estimation
The Top Figure Plots the Expected Risk Premium as a Function
of the Spread, Estimated Using Variable Kernel Estimation. The
Bottom Figure Plots the First Derivative of the Above Relation.
]
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ture spread, ie., the response coefficient is predomi-
nantly positive. There is some evidence that, for large
positive spreads, this relation is reversed; however, the
decline in the premium between spreads of 1% and 3%
is small enough to be economically insignificant. For
this range of spreads, the response coefficient is close to
zero.

Second, the relation between the expected risk pre-
mium and the slope of the term structure is nonlinear.
In particular, there appear to be three important com-
ponents of this relation, and the response coefficient
suggests an almost piecewise linear relation (with two
breakpoints). At especially low spreads of less than
—1%, an increase of 0.25% in the spread implies an in-
crease in the risk premium of approximately 0.50% (a
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derivative of 2). Note that although these negative
spreads are not common, over 10% of the sample still
falls into this region. The majority of the sample (ap-
proximately 65%), however, covers term structure
spreads between —1% and 1%. Over this range of val-
ues, the risk premium is more sensitive to movements
in the slope of the term structure. For a 0.25% change in
the spread, the risk premium is expected to change by
approximately 1.5% (a derivative of 6). For large
spreads (i.e., over 1%), and over approximately 25% of
the sample, the expected risk premium is relatively con-
stant, irrespective of changes in the term structure
spread, and the response coefficient is small.

Could measurement errors be affecting the results?
One issue is that measurement errors in the risk-free
rate, which appears on both the left and right hand sides
of the regression, may be driving the positive relation
between the risk premium and the slope of the term
structure. A priori, this is unlikely, and a replication of
the analysis with total returns as the dependent variable
yields similar results. A second issue is that measure-
ment error in the spread may be introducing spurious
nonlinearity. For example, if the variance of the spread
is smaller for large absolute spreads (i.e., large negative
or large positive spreads), then the effects of measure-
ment error will be exacerbated in these regions. As a
result, the coefficient will be downward biased in these
regions, generating a pattern similar to the one observed
in Figure 2. Of course, there is little reason to believe
that the spread volatility takes this form, and, in fact,
the reverse effect, wherein the variance of the spread is
higher for higher absolute spreads, seems more likely.

Measurement error aside, the kernel estimation sug-
gests a nonlinear relation between the risk premium and
the term structure spread. However, it is difficult to
gauge its statistical significance. Given the lack of a spe-
cific null hypothesis regarding the functional form of
the relation between the risk premium and the term
structure slope, the most appropriate statistical test of
the kernel estimation results is a general test for the
presence of nonlinearity. With this goal in mind, a non-
parametric bootstrapping experiment is designed as fol-
lows:

1. excess returns are regressed on the slope of the
term structure to obtain linear regression coeffi-
cients,

MANAGEMENT SCIENCE/Vol. 43, No. 3, March 1997

2. these coefficients and the term structure data are
then used to construct 1000 artificial sequences of 189
excess returns by sampling with replacement from the
regression errors,

3. the conditional mean of these returns is then esti-
mated using kernel estimation,

4. the estimated mean is then projected linearly on
the term structure spread data and the mean squared
error (MSE) is calculated, and finally,

5. the MSEs from the 1000 replications are compared
to the MSE from projecting the kernel estimation mean
from the actual data on the slope of the term structure.
Note that the simulated returns are constructed to be a
linear function of the slope of the term structure. Thére-
fore, the linear projection of the kernel estimation mean
should produce smaller MSEs in the simulated data
than in the actual data, if, in fact, the actual data are
generated by a nonlinear function. The MSE from the
actual data falls at the 94.1 percentile of the simulated
MSEs, giving strong support for a hypothesis of nonlin-
earity.

One caveat to the above bootstrapping exercise is that
the resampling technique destroys any autocorrelation
or heteroskedasticity patterns that may exist in the er-
rors. In fact, there is evidence of a small, yet statistically
significant, degree of autocorrelation and autoregres-
sive heteroskedasticity in the residuals from the linear
regression. One method for addressing this concern is
to perform bootstrapping with errors that are con-
structed to have these properties. The drawback of this
procedure is that it requires a detailed parametric spec-
ification for the structure of the residuals, which intro-
duces potential misspecification problems. Neverthe-
less, we perform a simple parametric bootstrapping ex-
ercise that captures the salient features of the estimated
residuals. Specifically, in step 2 of the procedure above,
the sequences of artificial returns are generated using
the model

' P11 = Bo + ﬁlArIf,t + €141, (16)
€+1 = 06 = Uy Upa ~ N(O, B), 17)
h? =% + 71ut2/ (18)

where the coefficients are estimated from the data. In
this case, the MSE from the actual data falls at the 96.2
percentile of the simulated MSEs, which is even more
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supportive of nonlinearity than the nonparametric boot-
strapping exercise above.

The final interesting feature of the kernel estimation
is that the expected risk premium is often negative.
Moreover, given the sample distribution of the term
structure spread, these negative expected risk premi-
ums are not that rare. For example, over one-third of
the sample implies term structure spreads which are
consistent with negative risk premiums. Note that the
negative (positive) premiums are almost exclusively as-
sociated with downward (upward) sloping term struc-
tures.

The Conditional Variance of the Risk Premium.
Figure 3 graphs the variance of the risk premium con-
ditional on the term structure spread, i.e., 62[rpis1 | Aryg]
versus Ary,. The results are in remarkable contrast to
those presented above for the conditional expected risk
premium. In particular, at large values of the spread
(e.g., above 1%), the variance is increasing in the slope
of the term structure. For example, the variance in-
creases from 3.0% to 54% over the range of spreads
above 1%. However, over this same range, the risk pre-
mium does not change. Apparently, there is little link
between the expected risk premium and its variance
when conditioning on the term structure.”’ As addi-
tional evidence of the behavior of the risk premium’s
variance, note that, when the risk premium is increasing
in the spread (i.e., at Ary, < 1%), the variance is, for the
most part, constant around 2.3%. This, again, contra-
dicts the well known intuition implied by the standard
dynamic capital asset pricing model that the risk pre-
mium is increasing in its variance (e.g., see Merton
1980).

5.2. The Sign of the Expected Risk Premium

Results from the kernel estimation imply that the dis-
tribution of the risk premium varies with different
shapes of the term structure of interest rates. To better
understand the statistical significance of these results,
consider conditioning the risk premium on downward
versus upward sloping term structures. In a generalized

3 This finding is generally consistent with evidence presented in Pa-
gan and Hong (1989) and Whitelaw (1994). The results in French,
Schwert and Stambaugh (1987) and Harvey (1991) are more mixed.
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method of moments (GMM) framework, the moment
conditions are:

(TP:+1 - I-"up) X It,up
E (?‘Pm = Houn) X | -
{(rle - l"'up)2 - alztp} X It,up ‘
{(rpt+1 - Pfd(rwn)z - o%own} X It,down

=0,

where I, ,, = 1if Ary; = 0 and zero otherwise; Liown =1
if Ary; < 0 and zero otherwise. The moments we esti-
mate, pi,, and pyun, correspond to the mean risk pre-
miums conditional on an upward or downward sloping
term structure respectively. Similarly, o2, and o3, are
the variances of the risk premium in the two states.

These moment conditions allow us to test a variety of
restrictions, First, is f1,, = paown?"* Second, does the risk
premium change sign depending on the slope of the
term structure as the results in §5.1 suggest? Table 4
provides estimates of fuy, Kaouwn, T4y, and 02.un, and the
corresponding test statistics. Note that the framework
allows for both autocorrelation and heteroskedasticity
in the risk premium when calculating the variance-
covariance matrix of the estimates. Further, the cross-
correlation between the estimates is taken into account
in deriving the test statistics.

The average risk premium, over the entire sample pe-
riod, conditional on the term structure being upward
sloping, is 6.86%. In contrast, the average premium is
—2.85% when the term structure is downward sloping.
The difference in the expected risk premium for upward
versus downward sloping yield curves is significant at
conventional levels, i.e., ft,, = Hioun- Specifically, the test
statistic, which is asymptotically normal, is 3.789 with
a corresponding p-value of 1.000. This result appears to
be robust over the two subperiods. In the 1802-1896
period fi,, = 3.67% and figmn = —2.12%, while in the
1897-1990 period f,, = 9.02% and fin = —4.25%.
These differences are again significant at usual levels
(although the evidence is stronger for the latter sub-
period).

Given that the conditional means are so different for
upward versus downward sloping term structures, it is

" Boudoukh, Richardson and Smith (1993) provide a test of multiple
inequality restrictions in the context of conditional asset pricing tests.
However, since the restrictions in this paper are univariate, we avoid
the complications that arise with multivariate one-sided tests.
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Table 4 The Risk Premium and the Term Structure Spread: Conditional Moments
Period P fu - 2, & &omm 2t
1802-1990 0.614 0.0686 —0.0285 3.789 0.0267 0.0241 0.2491
(0.0135) (0.0184) {1.000) {0.0098) (0.0063) {0.598)
1802-1896 0.495 0.0367 ~0.0212 1.814 0.0142 0.0205 ~0.6630
(0.0160) (0.0216) (0.965) (0.0035) (0.0090) (0.2537)
1897-1990 0.734 0.0902 —-0.0425 3.629 0.0341 0.0309 0.2461
(0.0164) (0.0326) (1.000) (0.0161) (0.0057) (0.5972)

Note: Table 4 provides the mean and variance of the risk premium conditiona! on whether the term structure is upward or
downward sloping. In particular, the following moments are estimated:

(mlﬂ - I‘uﬂ) X I?,up
{rPrs1 = tdown) X lidown =0
Der = 0u)? = a2} X hyyp '
{(Prer = toown)® — TFownd X hyo

where /,,, = 1if Ary, = 0 and zero otherwise; /s, = 1 if Ary; < 0 and zero otherwise. Standard errors, in parentheses,
are heteroskedasticity and serial correfation adjusted using Hansen's (1982) GMM. The statistics Logmnaom AND Z2 2 tost
whether the conditional means and conditional variances are equal. Both test statistics are asymptotically normal, with A~
values reported in parentheses. P, is the fraction of years during the period for which the term structure is upward sloping.

Annual data on stock returns, one-year rates and long-rates (maturity close to 20 years) are used.

of some interest to estimate their corresponding condi-
tional variances. Table 4 presents estimates of these vari-
ances. Remarkably, there is almost no difference in the
variance estimates during periods with upward versus
downward sloping term structures. Over the entire
sample period, the variance of the risk premium con-
ditional on an upward sloping term structure is 2.67%,
versus 2.41% conditional on a downward sloping term

structure. At first glance, these results seem to contra-
dict the variance estimates calculated from the kernel
estimation performed in §5.1. Note, however, that the
variance of the risk premium is increasing in the spread
only at very high levels of the spread. In fact, Figure 3
shows that, for the majority of spreads between 0% and
0.5%, the variance of the risk premium is actually lower
than the variance corresponding to negative spreads.
The overall conclusion from this analysis is that there
is statistically reliable evidence that the expected risk
premium has varied with the slope of the term structure
over the past two centuries. This result appears robust
across subsamples. Furthermore, the evidence suggests
that the risk premium changes sign depending on
whether the term structure is upward or downward
sloping. Of some importance, the evidence implies that
these changes in the risk premium do not seem to be

MANAGEMENT SCIENCE/ Vol. 43, No. 3, March 1997

due to changes in variance per se. While these results
are consistent with equilibrium models of asset pricing
(as demonstrated in the following section), they illus-
trate how important it is in practice to take account of
time-varying risk.

6. A Stylized Example

To get a better understanding of the economic intuition
behind the empirical results documented in §§3-5, we
return to the theoretical framework of §2. At the level
of generality of Eq. (1), little can be said about the re-
lation between the risk premium and the slope of the
term structure. Consequently, we make two simplifying
assumptions: '

1. The representative agent has constant relative risk
averse preferences with risk aversion parameter y and
time discount factor g, givinga MRS of M, ,,, = B(C;.,,/
C)~7, where C, is consumption at time ¢.1°

2. The dividend stream of the market portfolio is
equal to the consumption stream of the representative
agent, i.e., D,, = C,.

1 This model is a specialization of the Lucas (1978) consumption-
based model.
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The Variance of the Risk Premium and the Spread: Kemel
Estimation

Figure 3

The Figure Plots the Variance of the Risk Premium as a Func-
tion of the Spread, Estimated Using Variable Kerne! Estimation.
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This second assumption tends to work against two of
the empirical results that we are attempting to replicate.
Equating consumption and dividends links the MRS
and the return on the market, and therefore makes neg-
ative risk premiums more difficult to attain, and it also
strengthens the link between the risk premium and the
volatility of returns. Nevertheless, this model is still suf-
ficiently rich, yet tractable, to illustrate the relation be-
tween the risk premium and the term structure.

Time variation in both the equity risk premium and
the term structure are determined by the dynamics of
the consumption/dividend growth process. In order to
solve for returns and interest rates, this process must be
parameterized. For simplicity we consider a stylized,
discrete state space, Markovian economy.'® In particu-

lar, consumption/dividend growth can take on only-

one of four possible values each period. There are four
possible states of the world, and the dynamic evolution
of the economy is completely described by a four-by-
four transition matrix (denoted ), which gives the

B

16 Backus and Gregory (1993) use a similar framework for investigat-
ing the relation between risk premiums and conditional variances.
Tauchen and Hussey (1991) provide a more general discussion of us-
ing discrete state space models to approximate continuous state space
processes. Cecchetti, Lam, and Mark (1990) follow a related strategy
of parameterizing a Markov switching model to investigate autocor-
relations in equity returns. .
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probability of moving from any state to any other state
(e.g., the (2,3) element of the matrix, w3, gives the prob-
ability of going from state 2 at time £ to state 3 at time ¢
+ 1). For our particular numerical example, we use the
parameter values

0.25
0.50
0.25
0.00

0.00
0.00
025
0.25

0.50
0.25
0.25
0.00

0.25
0.25
0.25
0.75

1.04

.| 102

& =100}
092

B =093, y=200, 19

where g¢ denotes consumption/dividend growth (i.e.,
g= Ci+1/Ct = Dpnes1/ D)

Note that these parameter values are not chosen to
match any particular features of consumption data, but
rather to broadly replicate the results of the empirical
analysis. The intention is to illustrate the intuition un-
derlying the relation between the equity risk premium
and the slope of the term structure in as simple a setting
as possible. From this perspective, states of the world
with high consumption growth represent our stylized
expansions, and those with low consumption growth
represent contractions. The structure of the transition
matrix governs the probability of moving between these
states. For example, states 1 and 2 are expansionary
states and state 4 is the contractionary state. However,
Wie = Wye = Wy = wyz = 0, therefore there are no direct
transitions from expansions to contractions or vice
versa. Instead, the economy must go through the no-
growth state (state 3) between phases.

Given this simple structure, it is straightforward to
calculate conditional expectations of consumption/div-
idend growth, conditional on being in a particular state
of the world. For example, E/[g{,.1] = €g°, where the
result is a four-by-one vector giving the expectation in
each state of the world. By extension the price of a 1-
period riskless bond in each state is simply the expec-
tation of the MRS, i.e., P; = 6(g°)~". The price of a 2-
period bond is the expected discounted value of a 1-
period bond, ie., P, = Q[B(g)"7-*P1] (where -* is
element by element multiplication), and longer matur-
ity bonds are defined analogously.
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Figure 4  The Risk Premium and the Spread in a Stylized Model
The Figure Plots the Expected Risk Premium versus the Yield
Spread for the Discrete State Space, Markovian Economy De-
scribed in Section 6. The Parameter Values Are Given in Equa-
tion (19).
£ — .
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To calculate the risk premium, recall that equity re-
turns are ‘

— QmH-l + DmHl

Rutrr = ——Q——— (20)
mt

th+1 + C't+1
' == 21
o @n

Ct+1) Qu+1/Ciia + 1

= . 22
( ¢ ) QG @)

State-by-state consumption /dividend growth is given,
hence to calculate returns it is sufficient to calculate the
price-dividend ratio in each state of the world. Rewrit-

ing Eq. (1) in terms of the price-dividend ratio and sub-
stituting for the MRS

Q/Cr = EdB(gE111) Q1 /Ci + Cria /CI] (23)
= EdB(gi141)' "(Q141/Cria + 1] (24)
= EdB(gi,40)' "]
+ EfB(g541) " Qe / Crinl. (25)
Solving for the price-dividend ratio (denoted Q/C).
Q/C=[I- (1BEI M-+ NBEI'"], (26)

where [ is the identity matrix, 1 is a vector of ones, and
superscript T denotes transpose. Combining this price-
dividend vector with the consumption/dividend
growth vector gives realized equity returns as the econ-
omy moves from one state to any other state. It is then
straightforward to compute the conditional expecta-
tions and variances of these returns using the transition

For the parameter values above, Figure 4 graphs the
expected equity risk premium against the slope of the
term structure for each of the four states of the world.
The state-by-state values are also provided in Table 5.
The slope of the term structure is defined as the yield
spread between a 10-period risk-free bond and a 1-
period risk-free bond, although similar patterns arise
for any spread between long-term and short-term risk-
free yields. The figure illustrates a number of interesting
features. First, the spread and the equity risk premium
are generally positively related, although this relation is
nonlinear. Note that the graph resembles quite closely
the estimated empirical relation shown in Figure 2.

Table § The Risk Premium and the Yield Spread In a étylized Model

State o ac R Ary E‘[’pﬁ.j] Var, g[fp“, 1
1 104 1162 1288%  9.58% -3.30% -0.012% 0.96
2 102 1169 11.81%  945% -236%  —0.013% 1.33
3 100 1226 5.90%  8.23% 2.48% 0.150% 3.84
4 092 1272 3.02%  7.38% 4.52% 0.165% 4.79

Note: Table 5 provides state-by-state values of consumption growth, the price-dividend ratio,
the 1-period risk-free rate, the 10-period risk-free rate, the yield spread, the expected risk
premium, and the variance of the risk premium for the discrete state space, Markovian, con-
sumption-based model described in Section 6. Parameter values are given in Equation (19).
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During expansions (states 1 and 2), short-term expected
consumption growth is high, and therefore short-term
interest rates are also high. In the long-term, consump-
tion growth is expected to revert to its long-run mean,
therefore long-term rates are lower. Together these con-
ditions imply inverted term structures (see Table 5). The
expected equity risk premium is also low because the
return on equity does not covary negatively with the
MRS—a point which is discussed in more detail below.
The opposite is true in contractions (state 4)—short-
term rates are low, the term structure is upward sloping,
and the equity risk premium is higher. The counter-
cyclical behavior of both the expected risk premium and
the yield spread has been noted previously in the liter-
ature, as discussed in §2. ’

A second interesting observation from Figure 4 is that
negative risk premiums occur in states 1 and 2 (expan-
sions). Recall that the risk premium can be negative if,
and only if, the return on equity covaries positively with
the MRS (see Eq. (8)). In this simple world, this condi-
tion reduces to

1 + th+1/cl+1
th/ct

At first glance, this seems unlikely, because consump-
tion growth will clearly vary inversely with the inverse
of consumption growth. The covariance can only be
positive if the second element of market returns domi-
pates the dividend growth effect, i.e., if the price-
dividend ratio decreases when consumption growth is
high. In fact, this is exactly what happens, as can be seen
from the price-dividend ratios reported in Table 5. High
consumption growth implies high dividends, but it also
generates low price-dividend ratios. The intuition be-
hind this result is relatively straightforward. Recall from
Eq. (9) that the price is the expected discounted value
of future dividends. Consumption/dividend growth is
persistent; therefore, high growth today implies high
growth in the future. However, for a risk aversion pa-
rameter greater than 1, the effect of growth on the dis-
count rate dominates the effect on future dividends.
High growth actually hurts the value of the equity.
Thus, the effect of current dividends on the equity re-
turn is more than offset by the price effect, i.e., the cap-
jtal gain or loss. As a result, equity is actually a hedge
against aggregate consumption shocks. Consequently,

Covf[gf,m , (gf,m)‘z] >0 (27)
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investors are willing to accept a lower expected return
on equity than on the risk-free bond.

Finally, the variance of the risk premium is not mono-
tonically related to the expected risk premium. In this
particular numerical example, the variance is monoton-
ically related to the spread, but the expected risk pre-
mium is not (see Table 5). This result is simply a func-
tion of the fact that in this model risk is measured by
covariance with the MRS. The variance of the risk pre-
mium is not necessarily a good proxy for priced risk;
therefore there is no reason to expect the variance to be
related to the expected risk premium.

7. Conclusion

We find that there is a statistically significant nonlinear
relation between the equity risk premium and slope of
the term structure. From a practical viewpoint, our re-
sults imply that the linear approximations implicit in
prior work may brush aside useful information regard-
ing the predictive power of the term structure for move-
ments in the expected risk premium. For example, we
show that changes in the term structure spread have
vastly different implications for expected stock return
premiums, depending on the level of the spread itself.
In addition, the nonlinearity, the sign change in the risk
premium, and the apparent importance of upward ver-
sus downward sloping term structures provide an in-
teresting set of stylized facts to be explained by equilib-
rium asset pricing models.”

17 We would like to thank Jeremy Siegel for use of the data and the
editor, Rob Heinkel, two anonymous referees, Jay Shanken, and sem-
inar participants at Duke University and the 1993 WFA meetings for
helpful comments.
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